Effect of proton-conduction in electrolyte on electric efficiency of multi-stage solid oxide fuel cells
نویسندگان
چکیده
Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilution downstream of the fuel flow. Therefore, evolved technologies are required to achieve considerably higher electrical efficiencies. Here we present an innovative concept for a critically-high fuel-to-electricity conversion efficiency of up to 85% based on the lower heating value (LHV), in which a high-temperature multi-stage electrochemical oxidation is combined with a proton-conducting solid electrolyte. Switching a solid electrolyte material from a conventional oxide-ion conducting material to a proton-conducting material under the high-temperature multi-stage electrochemical oxidation mechanism has proven to be highly advantageous for the electrical efficiency. The DC efficiency of 85% (LHV) corresponds to a net AC efficiency of approximately 76% (LHV), where the net AC efficiency refers to the transmission-end AC efficiency. This evolved concept will yield a considerably higher efficiency with a much smaller generation capacity than the state-of-the-art several tens-of-MW-class most advanced combined cycle (MACC).
منابع مشابه
Three-dimensional modeling of transport phenomena in a planar anode-supported solid oxide fuel cell
In this article three dimensional modeling of a planar solid oxide fuel cell (SOFC) was investigated. The main objective was to attain the optimized cell operation. SOFC operation simulation involves a large number of parameters, complicated equations, (mostly partial differential equations), and a sophisticated simulation technique; hence, a finite element method (FEM) multiphysics approach ...
متن کاملCooperative mechanisms of fast-ion conduction in gallium-based oxides with tetrahedral moieties.
The need for greater energy efficiency has garnered increasing support for the use of fuel-cell technology, a prime example being the solid-oxide fuel cell. A crucial requirement for such devices is a good ionic (O(2-) or H+) conductor as the electrolyte. Traditionally, fluorite- and perovskite-type oxides have been targeted, although there is growing interest in alternative structure types for...
متن کاملImprovement of ionic conductivity of gadolinium doped ceria electrolyte with nano CuO sintering aid
Gadanium doped cerium oxide ceramic (GDC) is widely used as solid electrolytes in solid oxide fuel cells because of its high oxygen ion conductivity. In this study, the effect of addition of nano CuO as a sintering aid on the properties of GDC electrolyte were investigated. For this purpose, 0.2, 0.5, and 1% mole of nano Cuo was added to GDC ceramics, which was synthesized by the solid-state me...
متن کاملIonic Conducting Composite as Electrolyte for Low Temperature Solid Oxide Fuel Cells
........................................................................................................................ I LIST OF PAPERS .............................................................................................................. II TABLE OF CONTENTS ................................................................................................. VII 1 INTRODUCTION ............
متن کاملHigh proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition.
Reducing the operating temperature in the 500-750 °C range is needed for widespread use of solid oxide fuel cells (SOFCs). Proton-conducting oxides are gaining wide interest as electrolyte materials for this aim. We report the fabrication of BaZr(0.8)Y(0.2)O(3-δ) (BZY) proton-conducting electrolyte thin films by pulsed laser deposition on different single-crystalline substrates. Highly textured...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015